Abstract
We characterize sandwiched singularities in terms of their link in two different settings. We first prove that such singularities are precisely the normal surface singularities having self-similar non-archimedean links. We describe this self-similarity both in terms of Berkovich analytic geometry and of the combinatorics of weighted dual graphs. We then show that a complex surface singularity is sandwiched if and only if its complex link can be embedded in a Kato surface in such a way that its complement remains connected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.