Abstract
AbstractRecent studies arising from both statistical analysis and dynamical disease models indicate that there is a link between incidence of cholera, a paradigmatic waterborne bacterial disease (WBD) endemic to Bangladesh, and the El Niño–Southern Oscillation (ENSO). However, a physical mechanism explaining this relationship has not yet been established. A regionally coupled, or “pacemaker,” configuration of the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model is used to investigate links between sea surface temperature in the central and eastern tropical Pacific and the regional climate of Bangladesh. It is found that enhanced precipitation tends to follow winter El Niño events in both the model and observations, providing a plausible physical mechanism by which ENSO could influence cholera in Bangladesh.The enhanced precipitation in the model arises from a modification of the summer monsoon circulation over India and Bangladesh. Westerly wind anomalies over land to the west of Bangladesh lead to increased convergence in the zonal wind field and hence increased moisture convergence and rainfall. This change in circulation results from the tropics-wide warming in the model following a winter El Niño event. These results suggest that improved forecasting of cholera incidence may be possible through the use of climate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.