Abstract

Spine stability is ensured through isometric coactivation of the torso muscles; however, these same muscles are used cyclically to assist ventilation. Our objective was to investigate this apparent paradoxical role (isometric contraction for stability or rhythmic contraction for ventilation) of some selected torso muscles that are involved in both ventilation and support of the spine. Eight, asymptomatic, male subjects provided data on low back moments, motion, muscle activation, and hand force. These data were input to an anatomically detailed, biologically driven model from which spine load and a lumbar spine stability index was obtained. Results revealed that subjects entrained their torso stabilization muscles to breathe during demanding ventilation tasks. Increases in lung volume and back extensor muscle activation coincided with increases in spine stability, whereas declines in spine stability were observed during periods of low lung inflation volume and simultaneously low levels of torso muscle activation. As a case study, aberrant ventilation motor patterns (poor muscle entrainment), seen in one subject, compromised spine stability. Those interested in rehabilitation of patients with lung compromise and concomitant back troubles would be assisted with knowledge of the mechanical links between ventilation during tasks that impose spine loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.