Abstract

Large-scale states of ocean and atmosphere control the quantity and routine of vapor transported into land and the land water storage pattern. However, the contributions of leading climatic modes, or teleconnections (TCs), to global terrestrial water storage (TWS) variations are poorly understood. Here, we use measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to study 14 main TC controls on river basins and continental and global water storage patterns. Variations in terrestrial water storage anomaly (TWSA) in>97.5% of the global land surface are significantly correlated with at least 1 studied climatic mode. Among the 14 leading climatic modes, the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and Indian Ocean Dipole (IOD) affect terrestrial water storage in 76.5%, 74.6%, 59.7% and 46.4% of the global land surface, respectively. By associating each TC contribution, ENSO appears to have a weaker control on global land water storage than previously thought for dominating TWSA in 31.8% of global land, in contrast to PDO dominating TWSA in 36.6%. Our results suggest that the phase combination of TCs adjusts the response degree and time lag of land water storage via different hydrological cycle components, while the processes remain dynamic and highly uncertain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.