Abstract

AbstractThe standard C/C++ implementation of a spatial partitioning data structure, such as octree and quadtree, is often inefficient in terms of storage requirements particularly when the memory overhead for maintaining parent‐to‐child pointers is significant with respect to the amount of actual data in each tree node. In this work, we present a novel data structure that implements uniform spatial partitioning without storing explicit parent‐to‐child pointer links. Our linkless tree encodes the storage locations of subdivided nodes using perfect hashing while retaining important properties of uniform spatial partitioning trees, such as coarse‐to‐fine hierarchical representation, efficient storage usage, and efficient random accessibility. We demonstrate the performance of our linkless trees using image compression and path planning examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.