Abstract

Wildfires transform the landscape, leading to changes in surface cover and, potentially, in water quality. The purpose of this study was to assess changes in the chemical composition of soils and surface water as a result of a wildfire that burned in 2006 in the Marão Mountains, NE Portugal, by comparing pre- and post-fire hydrochemical data and burned/unburned soil data, and to examine the recovery of vegetation over time using Landsat TM imagery. Studies that have access to pre-fire data are rare and even fewer studies document changes in biomass as a result of fire and during the postfire recovery period. Samples of ash, soil and water, from within and outside the burned area, were collected 5months, and one year after the fire, for chemical analyses. Landsat TM Images were downloaded and transformed into a vegetation index, in order to analyze landcover dynamics and to calculate biomass. The wildfire effects on the Marão River water quality, resulted in an increase in the total mineralization of water. Five months after the wildfire the electrical conductivity (E.C.) at the mainstem was about 56% higher than pre-fire values (E.C. increased from 25 to 39μS/cm) and still higher one year after (36μS/cm). Cations of Ca, Na, Mg and Mn showed the greatest increase. This increase was probably triggered by the movement of ash to the watercourses. This disturbance had already attenuated one year after wildfire to values closer to pre-fire data except for manganese. Manganese had anomalous concentrations in the water within the burned area. The concentration of Mn in ash samples reached values up to 5 times more than values found in underlying soils. One year after the wildfire, almost all the burned area had recovered with herbaceous vegetation and patches of shrub vegetation. The wildfire burned 1194.7dry tons of biomass which means, on average, 4.9dry ton/ha. Based on the mass of burned biomass, we calculated approximately 350g/ha of Mn were released as a result of the fire. We suggest that this type of calculation can be conducted before a fire to help resource managers understand worst-case scenarios for changes in water quality that have the potential to affect aquatic biotic and the suitability of water for drinking water purposes and agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call