Abstract

To evaluate the potential use of tree-ring data as a proxy for fire activity at the scale of a large boreal region, we analyzed a set of regional tree-ring chronologies of Siberian larch (Larix sibirica L.), a spatially implicit annual fire record, and monthly climate data for the Komi Republic for the period 1950–1990. In most years, annually burned area was below 0.001% of the republic's forested area and reached up to 0.7% during fire-prone years. Principal components (PC) of summer aridity resolved 64.2% of the annual variation in the number of fires, 12.2% in the average fire size, and 59.2% in the annually burned area. In turn, tree-ring PCs explained 65.2% of variation in fire-related weather PCs. Dendrochronological reconstruction of the annual number of fires and of the log-transformed annually burned area predicted 27.0% and 40.1% of the high-frequency variance of these variables, respectively. Coefficient of efficiency, a measure of reconstruction usefulness, reached 0.081 (number of fires) and 0.315 (annual area burned), supporting the obtained index as a realistic proxy for regional fire activity. Decadal variation in coefficient of efficiency values suggested improved monitoring accuracy since 1960 and more effective fire suppression during the last studied decade (1980–1990).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.