Abstract
In this paper, which is a culmination of our previous research efforts, we provide a general framework for studying mixing profiles of non-backtracking random walks on dynamic random graphs generated according to the configuration model. The quantity of interest is the scaling of the mixing time of the random walk as the number of vertices of the random graph tends to infinity. Subject to mild general conditions, we link two mixing times: one for a static version of the random graph, the other for a class of dynamic versions of the random graph in which the edges are randomly rewired but the degrees are preserved. With the help of coupling arguments we show that the link is provided by the probability that the random walk has not yet stepped along a previously rewired edge.To demonstrate the utility of our framework, we rederive our earlier results on mixing profiles for global edge rewiring under weaker assumptions, and extend these results to an entire class of rewiring dynamics parametrised by the range of the rewiring relative to the position of the random walk. Along the way we establish that all the graph dynamics in this class exhibit the trichotomy we found earlier, namely, no cut-off, one-sided cut-off or two-sided cut-off.For interpolations between global edge rewiring, the only Markovian graph dynamics considered here, and local edge rewiring (i.e., only those edges that are incident to the random walk can be rewired), we show that the trichotomy splits further into a hexachotomy, namely, three different mixing profiles with no cut-off, two with one-sided cutoff, and one with two-sided cut-off. Proofs are built on a new and flexible coupling scheme, in combination with sharp estimates on the degrees encountered by the random walk in the static and the dynamic version of the random graph. Some of these estimates require sharp control on possible short-cuts in the graph between the edges that are traversed by the random walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stochastic Processes and their Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.