Abstract

AbstractMeasurements of dust aerosol size usually obtain the optical or projected area‐equivalent diameters, whereas model calculations of dust impacts use the geometric or aerodynamic diameters. Accurate conversions between the four diameter types are thus critical. However, most current conversions assume dust is spherical, even though numerous studies show that dust is highly aspherical. Here, we obtain conversions between different diameter types that account for dust asphericity. Our conversions indicate that optical particle counters have underestimated dust geometric diameter (Dgeo) at coarse sizes. We further use the diameter conversions to obtain a consistent observational constraint on the size distribution of emitted dust. This observational constraint is coarser than parameterizations used in global aerosol models, which underestimate the mass of emitted dust within 10 ≤ Dgeo ≤ 20 μm by a factor of ∼2 and usually do not account for the substantial dust emissions with Dgeo ≥ 20 μm. Our findings suggest that models substantially underestimate coarse dust emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.