Abstract

Studying aqueous solutions of complex (bio)polymers is essential from both theoretical and practical perspectives. To understand the principles that govern the properties of these solutions is pivotal for the study of biological processes, considering that the most distinguished components of the cells are polymers (proteins, nucleic acids). These macromolecular aqueous systems, known as colloids, has raise the interest of scientists in recent years. It is known that several physicochemical properties deviate from ideal behaviour in this kind of solutions and that the physical state of water is different compared to its pure state. Particularly, the surface tension of such mixtures often shows a peculiar profile at semi-dilute and concentrated conditions. Here, we joined the colloidal concept of water polarization (proposed in the Association-Induction Hypothesis) with Damodaran's formalism for surface tension to theoretically derive a compelling mathematical model that explains the behaviour of polymer solutions. We measured the surface tension and osmolarity of different polyethylene oxide solutions and we used the ACDAN fluorescence probe to assess the water dipolar relaxation (polarization) in these mixtures. As a proof of concept, we also studied the influence of these polymer solutions on lipid interfaces. Our isotherm model explains the experimental observations with a unifying view that correlates with other measured properties, such as osmolarity and water dipolar relaxation. This provides a link between interfacial and bulk physicochemical properties of polymer solutions, also giving a new framework for studying the interaction of colloidal systems with lipid membranes interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call