Abstract

Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources (e.g., N and P), and can be a useful ecological tool for assessing potential P flux in ecosystems.

Highlights

  • The principle of stoichiometric homeostasis states that organisms maintain relatively stable levels of biologically-relevant elements over time

  • Soils sampled from XiaZhuhu wetland (XZ), XiXi National Wetland Park (XX), BaoYang riverine wetland (BY), and JinHu wetland (JH) are in a meso-eutrophic state, while the lowest soil C and P content among the sites was found in ShiQiu multipond wetland (SQ)

  • Fluctuations in dissolved reactive phosphorus (DRP) concentrations were found in the overlying water, DRP in porewater increased in the warmed treatment by 52% to 137% compared to the ambient treatment, except in the SQ wetland (Table 2)

Read more

Summary

Introduction

The principle of stoichiometric homeostasis states that organisms maintain relatively stable levels of biologically-relevant elements (e.g., carbon, nitrogen, and phosphorous) over time. This concept is based on ecological stoichiometry and is primarily applied to trophic interactions [1]. Temperature is one of the primary determinants affecting the metabolic rates of organisms, from cells to global-scale ecosystems, based on the metabolic theory of ecology [5,6]. Even a slight increase in temperature can alter energy flow and resource cycles in ecosystems and may affect environmental quality [3,7]. Understanding the response of stoichiometric homeostasis to global warming and its associated ecological feedback to the biosphere is gaining an increasing degree of attention worldwide

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call