Abstract

Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of lead-contaminated soils. In this study, Pb was sorbed to a model soil mineral, birnessite, and was placed in a simulated gastrointestinal tract (in vitro) to simulate the possible effects of ingestion of a soil contaminated with Pb. The changes in Pb speciation were determined using extended X-ray absorption fine structure and X-ray absorption near edge spectroscopy. Birnessite has a very high affinity for Pb with a sorption maximum of 0.59 mol Pb kg(-1) (approximately 12% Pb sorbed by mass) in which there was no detectable bioaccessible Pb (< 0.002%). Surface speciation of the birnessite Pb was determined to be a triple corner sharing complex in the birnessite interlayer. Lead sorbed to Mn oxide in contaminated media will have a very low (approximately equal to 0) Pb bioaccessibility and present little risk associated with incidental ingestion of soil. These results suggest that birnessite, and other Mn oxides would be powerful remediation tools for Pb-contaminated media because of their high affinity for Pb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.