Abstract

Software testing techniques and criteria are considered complementary since they can reveal different kinds of faults and test distinct aspects of the program. The functional criteria, such as Category Partition, are difficult to be automated and are usually manually applied. Structural and fault-based criteria generally provide measures to evaluate test sets. The existing supporting tools produce a lot of information including: input and produced output, structural coverage, mutation score, faults revealed, etc. However, such information is not linked to functional aspects of the software. In this work, we present an approach based on machine learning techniques to link test results from the application of different testing techniques. The approach groups test data into similar functional clusters. After this, according to the tester's goals, it generates classifiers (rules) that have different uses, including selection and prioritization of test cases. The paper also presents results from experimental evaluations and illustrates such uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.