Abstract

Integrating knowledge from various sources is a recurring problem in Artificial Intelligence, often addressed by multi-context systems (MCSs). Existing MCSs however have limited support for the open-world semantics of knowledge bases (KBs) expressed in knowledge representation languages based on first-order logic. To address this problem we introduce knowledge base networks (KBNs), which consist of open-world KBs linked by non-monotonic bridge rules under a stable model semantics. Basic entailment in KBNs is decidable whenever it is in the individual KBs. This is due to a fundamental representation theorem, which allows us to derive complexity results, and also gives a perspective for implementation. In particular, for networks of KBs in well-known Description Logics (DLs), reasoning is reducible to reasoning in nonmonotonic dl-programs. As a by product, we obtain an embedding of a core fragment of Motik and Rosati’s hybrid MKNF KBs, which amount to a special case of KBNs, to dl-programs. We also show that reasoning in networks of ontologies in lightweight DLs is not harder than in answer set programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.