Abstract

Systematic ocean observation for real time data collection during the last three decades, development of sensors and tools, and ocean modelling have paved the way for better understanding of the ocean processes and better prediction of coastal hazards like cyclones, tsunami, storm surge, etc., leading to direct societal benefits globally. In particular global ARGO float data have brought in remarkable changes in ocean science studies. This paper discusses about the growing need to link ocean observation to fisheries and futuristic approach about deep ocean marine living resources

Highlights

  • The goal of fisheries oceanography is to understand the oceanographic and ecological processes that affect fishery abundance, distribution, and availability and apply this understanding to improve fisheries assessment and management

  • Different robotic platforms like benthic landers, crawler, floats, glider, Autonomous Underwater Vehicle (AUV), Unmanned Airborne Vehicles (UAVs) and sensor systems are required for deep sea studies

  • The existing satellite based technique often does not work close to land and there is a need to evolve an unique methodology supported by primary field level data on productivity, coastal ocean monitoring data and fisheries data, which could be integrated and used to supplement the sea surface temperature derived from satellite imageries and other physical and chemical oceanographic data collected from moored and floating buoys for providing information on potential fishing zones along the coastal belt within 5-10nm zone for the benefit of fishers who do fishing using traditional sail powered and motorized fishing boats

Read more

Summary

Introduction

The goal of fisheries oceanography is to understand the oceanographic and ecological processes that affect fishery abundance, distribution, and availability and apply this understanding to improve fisheries assessment and management. Different robotic platforms like benthic landers, crawler, floats, glider, Autonomous Underwater Vehicle (AUV), Unmanned Airborne Vehicles (UAVs) and sensor systems are required for deep sea studies The use of these new underwater technologies will enhance our capabilities in improving our knowledge on the effects of climate change and ocean observation [7,8]. The existing satellite based technique often does not work close to land and there is a need to evolve an unique methodology supported by primary field level data on productivity, coastal ocean monitoring data and fisheries data, which could be integrated and used to supplement the sea surface temperature derived from satellite imageries and other physical and chemical oceanographic data collected from moored and floating buoys for providing information on potential fishing zones along the coastal belt within 5-10nm zone for the benefit of fishers who do fishing using traditional sail powered and motorized fishing boats. It is proposed to involve all the relevant Government organizations and stakeholders to make a realistic assessment of the deep sea fisheries resources/fish stock assessment and management in correlation with the oceanographic parameters

Why is the fishery pattern changing ?
Findings
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.