Abstract

In order to model entanglements of polymers in a confined region, we consider the linking numbers and writhes of cycles in random linear embeddings of complete graphs in a cube. Our main results are that for a random linear embedding of $K_n$ in a cube, the mean sum of squared linking numbers and the mean sum of squared writhes are of the order of $\theta(n(n!))$. We obtain a similar result for the mean sum of squared linking numbers in linear embeddings of graphs on $n$ vertices, such that for any pair of vertices, the probability that they are connected by an edge is $p$. We also obtain experimental results about the distribution of linking numbers for random linear embeddings of these graphs. Finally, we estimate the probability of specific linking configurations occurring in random linear embeddings of the graphs $K_6$ and $K_{3,3,1}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.