Abstract

The primary goal of this study is to investigate ammonia removal, abundance of nitrifying bacteria and microbial community structures in a laboratory-scale integrated fixed film activated sludge (IFAS) reactor. The results of Illumina MiSeq sequencing based on 16S rRNA genes showed Proteobacteria and Bacteroidetes were the dominant phyla in both biofilm and suspended sludge samples in the IFAS reactor. The dominant ammonia-oxidizing bacteria (AOB) species was Nitrosomonas and the dominant nitrite-oxidizing bacteria species was Nitrospira. The contribution of biofilm to ammonia removal increased from 4.0 ± 0.9% to 37.0 ± 2% when the temperature decreased from 25 °C to 10 °C. The real-time polymerase chain reaction (PCR) result showed the abundance of AOB in suspended sludge was higher than that in biofilm at the same time. However, nitrification is more dependent on attached growth than on suspended growth in the IFAS reactor at 15 °C and 10 °C and the abundance of AOB in biofilm was also higher than that in suspended sludge. The more robust ammonia removal rate at low temperatures by biofilm contributed to the relatively stable ammonia removal, and biofilm attached on carriers in the IFAS reactor is advantageous for nitrification in low-temperature environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.