Abstract

The central oscillator is believed to be the key mechanism by which plants adapt to new environments. However, impacts from hybridization, the natural environment, and human selection have rarely been assessed on the oscillator of a crop. Here, from clearly identified alleles at oscillator loci (OsCCA1/LHY, OsPRR95, OsPRR37, OsPRR59, and OsPRR1) in ten diverse genomes of Oryza sativa, additional accessions, and functional analysis, we show that rice's oscillator was rebuilt primarily by new alleles from recombining parental sequences and subsequent 5' or/and coding mutations. New alleles may exhibit altered transcript levels from that of a parental allele and are transcribed variably among genetic backgrounds and natural environments in RIL lines. Plants carrying more expressed OsCCA1_a and less transcribed OsPRR1_e flower early in the paddy field. 5' mutations are instrumental in varied transcription, as shown by EMSA tests on one deletion at the 5' region of highly transcribed OsPRR1_a. Compared to relatively balanced mutations at oscillator loci of Arabidopsis thaliana, 5' mutations of OsPRR37 (and OsCCA1 to a less degree) were under negative selection while those of OsPRR1 alleles were under strong positive selection. Together, range expansion of Asian rice can be elucidated by human selection on OsPRR1 alleles via local flowering time-yield relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.