Abstract

Lysosomal storage diseases (LSD) are inborn errors of metabolism resulting in multisystem disease. Central nervous system involvement, often with progressive neurodegeneration, accounts for a large portion of the morbidity and mortality seen in many LSD. Available treatments fail to prevent or correct neurologic symptoms and decline. Emerging evidence points to an important role for mitochondrial dysfunction in the pathogenesis and progression of LSD-associated neurodegeneration. Mitochondrial dysfunction in LSD is characterized by alterations in mitochondrial mass, morphology and function. Disturbed mitochondrial metabolism in the CNS may lead to excessive production of mitochondrial reactive oxygen species and dysregulated calcium homeostasis. These metabolic disturbances ultimately result in mitochondria-induced apoptosis and neuronal degeneration. Here, we review the current evidence for mitochondrial dysfunction in neuronal models of seven LSD, including GM1-gangliosidosis, mucopolysaccharidosis IIIC, multiple sulfatase deficiency, Krabbe disease, Gaucher disease, Niemann Pick disease type C and the neural ceroid lipofuscinoses and outline current experimental therapies aimed at restoring mitochondrial function and neuroprotection in LSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.