Abstract

Microphytobenthic (MPB) biofilms play significant roles in the ecology of coastal mudflats, including provision of essential food resources to shorebird species. In these ecosystems, water-divergence structures like jetties and causeways can drastically alter sedimentation patterns and mudflat topography, yet their effects on MPB biofilm biomass and distribution are poorly understood. Here, we used a combination of unoccupied aerial vehicle (UAV) technologies, photogrammetric processing, and sediment field samples to compare biofilm and mudflat characteristics between areas of the Fraser River Estuary with varying sedimentary regimes and shorebird use. Our aims were to: (1) demonstrate the use of fine spatial resolution UAV-acquired multispectral imagery (cm2) with extensive spatial coverage (>km2) and a co-alignment photogrammetric processing techniques to survey MPB biofilm and mudflat topography at spatial scales and detail relevant to foraging shorebirds; and, (2) investigate the effects of water-divergence structures on mudflat elevation and microtopography, as well as MPB biofilm biomass, distribution, and spatial patterning. From a technical perspective, co-alignment allowed us to analyze aligned and continuous fine-resolution elevation models and orthomosaics for large areas of the estuary, while the normalized difference vegetation index was a good predictor of sediment chlorophyll-a (R2 = 0.9). Using these data products, we found that mudflats in close proximity to water-divergence structures have cross-shore profiles characteristic of low sediment supply as well as decreased microtopographic variability. At disturbed sites, elevation and microtopography had a weaker influence on biofilm biomass compared to intact estuarine ecosystem sites. Analysis of biofilm patch showed that sites either had a relatively small number of large, contiguous patches, or a large number of smaller, isolated patches; however, less disturbed sites did not necessarily have larger biofilm patches than more disturbed sites. We conclude that UAV-acquired multispectral imagery and co-alignment-based workflow are promising new tools for ecologists to map, monitor, and understand MPB biofilm dynamics in ecologically sensitive estuaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.