Abstract

Background and objectives: Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by decreased immunoglobulins and recurrent infections, with non-infectious complications such as granulomatous–lymphocytic interstitial lung disease (GLILD) affecting up to 30% of patients. Methods: Using high-throughput 16S rRNA gene sequencing, salivary, sputum, and fecal microbiome from CVID patients with GLILD, comparing them to CVID patients without GLILD—with immune dysregulation (dCVID) and only infections (iCVID)—and healthy controls was analyzed. Results: A total of 41 CVID patients, 7 with GLILD, and 15 healthy donors were included. Global fecal biodiversity was significantly lower in GLILD patients compared to CVID subgroups and controls. GLILD patients harbored different specific bacterial communities in all niches, with some keystone species common to dCVID. Conchiformibius, Micrococcales, and Capnocytophaga are more frequent in the sputum of GLILD patients. Saliva in GLILD shows higher frequencies of Conchiformibius and Haemophilusparainfluenzae. Fecal samples from GLILD patients have higher levels of Gemella morbilorum, Lacticaseibacillus, and Cellulosimicrobium. A non-assigned Conchiformibius spp. is consistently associated with GLILD across different niches and could be a potential pathobiont or relevant microbiological marker for GLILD. Cluster network and correlation analyses show profound dysbiosis in the sputum, saliva, and feces of GLILD patients. Conclusions: These findings highlight significant microbiome alterations in CVID patients with GLILD, particularly in the respiratory tract, suggesting a possible link to both local and systemic immune dysregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.