Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Highlights
The development of the bioeconomy is critical in attaining several of the UN Sustainable Development Goals for 2030 (United Nations, 2015), including SDG7, SDG8 and SDG13, as well as achieving 20% energy production in Europe from renewable sources by 2020 (Vega et al, 2014)
This study investigated microbial community structure and function during the Anaerobic digestion (AD) of grass, under operating conditions favoring the accumulation of process intermediates
Proteins assigned to Gammaproteobacteria and Methanomicrobia represented a larger proportion of the metaproteomes from the grass biofilms when compared to leachate samples, while the reverse was observed for Bacteroidia and Clostridia (Figure 7)
Summary
The development of the bioeconomy is critical in attaining several of the UN Sustainable Development Goals for 2030 (United Nations, 2015), including SDG7 (renewable energy), SDG8 (good jobs and economic growth) and SDG13 (climate action), as well as achieving 20% energy production in Europe from renewable sources by 2020 (Vega et al, 2014). In this context harvesting valuable bioproducts from various waste streams becomes a necessary element for the growth of a sustainable bioeconomy worldwide (Werner et al, 2011). Perennial ryegrass has been demonstrated to be a suitable feedstock for AD (Cysneiros et al, 2011), leading to the production of energy with the potential for recovery of process intermediates of high market values (Cerrone et al, 2014)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.