Abstract
AbstractLandscapes evolve in response to prolonged and/or intense precipitation resulting from atmospheric processes at various spatial and temporal scales. Whereas synoptic (large‐scale) features (e.g., atmospheric rivers and hurricanes) govern regional‐scale hydrologic hazards such as widespread flooding, mesoscale features such as thunderstorms or squall lines are more likely to trigger localized geomorphic hazards such as landslides. Thus, to better understand relations between hydrometeorological drivers and landscape response, a knowledge of mesoscale meteorology and its impacts is needed. Here we investigate the extreme geomorphic response associated with one type of mesoscale meteorological feature, the narrow cold frontal rainband (NCFR). Resulting from low‐level convergence and shallow convection along a cold front, NCFRs are narrow bands of high‐intensity rainfall that occur in midlatitude areas of the world. Our study examines an NCFR impacting the Sierra Nevada foothills (California, USA) that initiated over 500 landslides, mobilized ~360,000 metric tons of sediment to the fluvial system (as much as 16 times the local annual sediment yield), and severely damaged local infrastructure and regional water transport facilities. Coupling geomorphological field investigations with meteorological analyses, we demonstrate that precipitation associated with the NCFR was both intense (maximum 15 min intensity of 70 mm/hr) and localized, resulting in a highly concentrated band of shallow landsliding. This meteorological phenomenon likely plays an important role in landscape evolution and hazard initiation. Other types of mesoscale meteorological features also occur globally and offer new avenues for understanding the effects of storms on landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.