Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels resulting from insulin deficiency or resistance. Streptozotocin, a potent diabetogenic agent, is commonly employed to induce experimental diabetes by selectively damaging pancreatic beta cells, resulting in insulin deficiency and hyperglycemia. Elevated Malondialdehyde (MDA) levels, indicative of oxidative stress and lipid peroxidation, are closely linked to diabetic complications. This study aimed to investigate the association between MDA levels and blood glucose in Streptozotocin-induced rat diabetes, shedding light on potential therapeutic strategies. Spectrophotometric analysis was utilized to quantify MDA levels in rat tissues, providing insights into the extent of oxidative damage. The results revealed a significant correlation between MDA levels and blood glucose, highlighting the role of oxidative stress in diabetic pathogenesis. These findings underscore the importance of targeting oxidative stress in diabetes management to prevent complications. In conclusion, the study emphasizes the relevance of monitoring MDA levels as a biomarker for assessing oxidative stress in diabetic conditions and guiding therapeutic interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.