Abstract

AbstractConceptual models of magma storage and transport under calderas favor a connected system of sills and dikes. These features are individually below the resolution of standard seismic tomography, but radial seismic anisotropy can reveal where they exist in aggregate. We model radial anisotropy at Okmok caldera, Alaska, to demonstrate the presence of a caldera‐centered stacked sill complex and surrounding dike system. We show that ascending magma, inferred from seismicity, either intersects the sill complex, resulting in a larger volume eruption of evolved magma, or bypasses the overlying sill complex via dikes, resulting in a low‐volume mafic eruption. Our results exemplify how the locations of magma storage and paths of transport impact eruption size and composition. As this type of crustal storage is likely common to many calderas, this analysis offers a potential new framework for volcano observatories to forecast the size of impending eruptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.