Abstract

Abstract Low salinity water injection in sandstone is an emerging technology just on the verge of being implemented full field in the UK and in Alaska, USA. Laboratory studies are important for providing relevant and well interpreted data before performing the field trial. However, laboratory investigations show varying results on low salinity EOR, most probably because of a limited understanding of the nature of the process. Recently we have published a "Smart Water" EOR mechanism where pH changes at the rock surface is inducing the wettability alteration, improving positive capillary forces and microscopic sweep efficiency. Researchers have experienced rather poor low salinity EOR effects from 17 different sandstone outcrops from the USA. In this work we have investigated 6 of the same 17 outcrops, and according to our chemical understanding, some factors are more important for observing LS EOR effects in sandstone. It is the increase in pH, ΔpH, obtained when the high salinity (HS) formation water is displaced by the low salinity (LS) injection water, and it is the initial pH and the amount of active cations (Ca2+) in the formation water that are related to the initial wetting. We have established a link between the poor low salinity EOR effect from all 6 outcrops and the corresponding pH change observed when switching from high salinity to low salinity injection water. The presence of different types of minerals such as clay, feldspars and anhydrite will influence the pH change, and must be taken into account. Additionally, we have seen that the formation water composition has strong influence on the low salinity EOR effect. Using a formation water with salinity like seawater (FW1 ~35 000 ppm) showed only a minor tertiary low salinity EOR effect, 0.74 %OOIP, corresponding to a low pH gradient of 0.5. While experiments using a high salinity formation water (FW2 ~100 000 ppm) showed a 5 % OOIP recovery, corresponding to a larger pH gradient of 2.0. The results observed are in agreement with the suggested chemical mechanism for the low salinity EOR effect, confirming that it is the pH gradient that triggers the low salinity EOR effect. In addition, the pH screening test used in this work proved once again to be a reliable tool to evaluate the low salinity EOR potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call