Abstract

We present the results of simultaneous radio (VLA) and X-ray (RXTE) observations of the Z-type neutron star X-ray binary GX 17+2. The aim is to assess the coupling between X-ray and radio properties throughout its three rapidly variable X-ray states and during the time-resolved transitions. These observations allow us, for the first time, to investigate quantitatively the possible relations between the radio emission and the presence of hard X-ray tails and the X-ray state of the source. The observations reveal (1) a coupling between the radio jet emission and the X-ray state of the source, that is, the position in the X-ray hardness-intensity diagram (HID); (2) a coupling between the presence of a hard X-ray tail and the position in the HID, qualitatively similar to that found for the radio emission; (3) an indication of a quantitative positive correlation between the radio flux density and the X-ray flux in the hard tail power-law component; (4) evidence for the formation of a radio jet associated with the flaring branch-to-normal branch X-ray state transition; and (5) that the radio flux density of the newly formed jet stabilizes when the normal-branch oscillation (NBO) in the X-ray power spectrum stabilizes its characteristic frequency, suggesting a possible relation between X-ray variability associated with the NBO and jet formation. We discuss our results in the context of jet models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.