Abstract

Coronae are crown-like, tectono-volcanic features found on Venus that typically range in diameter from 100-700 km. Diapirs of warm upwelling material impinging on the lithosphere are often invoked to explain coronae formation. With more than 500 coronae identified on the surface of Venus, if these diapirs are individually linked to a mantle plume, Venus must have a very different mantle structure than Earth. I consider three cases designed to assess the potential relationship between large-scale, long-wavelength lower mantle structure and smaller-scale upper mantle structure that could potentially form diapirs consistent with those that are envisioned to interact with the lithosphere and form coronae. I use the geoid and topography to identify the large-scale pattern of convection because the geoid contains and integral of the temperature anomalies over the depth of the mantle. Plume tails—narrow vertical conduits—integrate to give a positive geoid anomaly while small-scale, time-dependent drips or upwellings are minimized in the depth integration. The first case—the reference case—has a small, stepwise decreases in viscosity between the lower mantle (1022 Pa s), transition zone (1021 Pa s), and upper mantle (5x1020 Pa s) with no phase transformations. This led to 20 ~1000-km diameter mantle plumes that remained stationary for more than 1.5 Gyr. This calculation is consistent with a number of geophysical observations it does not support the formation of coronae by plume-lithosphere interaction. To decouple the lower and upper mantle, I further decrease both the upper mantle and transition zone viscosities to 1020 Pa s while leaving all other parameters unchanged. In this calculation the same 20 ~1000-km diameter mantle plumes formed and remained stationary for more than 1.5 Gyr. The geoid and topography are anti-correlated, inconsistent with the observed values on Venus and, the spatial scale, number, and topographic evolution of the plumes are not consistent with coronae. This calculation does not support the formation of coronae by plume-lithosphere interaction. In an attempt to further decouple the upper and lower mantle I add an endothermic phase transformation at the ringwoodite-bridgmanite boundary in addition to the decreased upper mantle and transition zone viscosities while leaving all other parameters unchanged. Unique to this calculation, a very large number of ~100-km diameter small topographic upwellings form some associated with the large-scale geoid high but never associated with the large-scale geoid low. The inclusion of a phase transformation decoupling the upper and lower mantle has the potential to create diapir-like structures in the upper mantle consistent with coronae formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call