Abstract

Our understanding of the link between plant functional traits and ecological impact of invasive alien plant species is fragmentary and the mechanisms leading to impacts are poorly understood. Moreover, current knowledge is heavily biased to the temperate regions of the world and we know much less about traits and impacts of invaders in tropical and subtropical ecosystems. We studied two leaf traits of the invasive alien shrub Chromolaena odorata and the impacts of its invasion on native vegetation in savannas. We compared specific leaf area (SLA) and leaf area index (LAI) between C. odorata and native species and assessed how C. odorata differentially affects canopy light interception, soil moisture, soil nutrients, and litter accumulation compared to native species. We found that C. odorata has higher SLA and LAI than native species, lower light and moisture levels below its canopy, but higher nutrient levels and a higher litter accumulation rate. Because of its higher SLA, C. odorata grows faster, resulting in more biomass, increased litter accumulation and higher nutrient availability. Due to its high SLA and LAI, C. odorata intercepts more light and reduces available moisture more than do native trees due to higher transpiration rates, reducing the biomass of native understory vegetation. This study provides empirical evidence for strong links between plant functional traits and ecological impact of invasive plant species, highlighting the importance of traits in predicting ecosystem-level impacts of invasive plant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call