Abstract

BackgroundDuchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders. It is caused by the absence of dystrophin, a core component of the sarcolemma-associated junctional complex that links the cytoskeleton to the extracellular matrix. We showed previously that plectin 1f (P1f), one of the major muscle-expressed isoforms of the cytoskeletal linker protein plectin, accumulates at the sarcolemma of DMD patients as well as of mdx mice, a widely studied animal model for DMD.Based on plectin’s dual role as structural protein and scaffolding platform for signaling molecules, we speculated that the dystrophic phenotype observed after loss of dystrophin was caused, at least to some extent, by excess plectin. Thus, we hypothesized that elimination of plectin expression in mdx skeletal muscle, while probably resulting in an overall more severe phenotype, may lead to a partial phenotype rescue. In particular, we wanted to assess whether excess sarcolemmal plectin contributes to the dysregulation of sugar metabolism in mdx myofibers.MethodsWe generated plectin/dystrophin double deficient (dKO) mice by breeding mdx with conditional striated muscle-restricted plectin knockout (cKO) mice. The phenotype of these mice was comparatively analyzed with that of mdx, cKO, and wild-type mice, focusing on structural integrity and dysregulation of glucose metabolism.ResultsWe show that the accumulation of plectin at the sarcolemma of mdx muscle fibers hardly compensated for their loss of structural integrity. Instead, it led to an additional metabolic deficit by impairing glucose uptake. While dKO mice suffered from an overall more severe form of muscular dystrophy compared to mdx or plectin-deficient mice, sarcolemmal integrity as well as glucose uptake of their myofibers were restored to normal levels upon ablation of plectin. Furthermore, microtubule (MT) networks in intact dKO myofibers, including subsarcolemmal areas, were found to be more robust than those in mdx mice. Finally, myotubes differentiated from P1f-overexpressing myoblasts showed an impairment of glucose transporter 4 translocation and a destabilization of MT networks.ConclusionsBased on these results we propose that sarcolemma-associated plectin acts as an antagonist of MT network formation in myofibers, thereby hindering vesicle-mediated (MT-dependent) transport of glucose transporter 4. This novel role of plectin throws a bridge between extra-sarcomeric cytoarchitecture and metabolism of muscle fibers. Our study thus provides new insights into pathomechanisms of plectinopathies and muscular dystrophies in general.

Highlights

  • Duchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders

  • To allow for optimal comparison of phenotypes, a breeding scheme was employed that generated all four genotypes of interest in the male offspring within single litters

  • As the muscle creatine kinase (MCK) promoter which drives the Cre-mediated knockout of plectin in skeletal muscle is active in heart, the shorter life span of double KO mice (dKO) mice could have been due to heart failure

Read more

Summary

Introduction

Duchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders It is caused by the absence of dystrophin, a core component of the sarcolemma-associated junctional complex that links the cytoskeleton to the extracellular matrix. Plectin is an important cytolinker protein that is responsible for the networking and anchorage of intermediate filaments (IFs) to organelles and junctional complexes. It is expressed as multiple isoforms with different short N-terminal sequences (generated by alternative 5′-splicing) that determine their differential cellular targeting [1,2]. Apart from functioning as structural reinforcement and organizing elements of the cytoskeleton, plectin isoforms play an important role as scaffolding platforms for signaling proteins involved in cell metabolism, stress response, and motility [10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call