Abstract

Schizophrenia is associated with cortical thickness (CT) deficits and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relationship between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map CT and fractional anisotropy in regionally adjacent infracortical white matter at various cortical depths. We found a robust and reproducible relationship between thickness and anisotropy deficits, which were inversely correlated across cortical regions (r = -.5, P < .0001): the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 y: r = -.3, P = .005) and middle life (30 y: r = -.4, P = .004, 40 y: r = -.3, P = .04), but not beyond 50 years (P > .05). Frontal pathology contributed most to this pattern, with cortical thinning in patients compared to controls at all ages (P < .05); in contrast to initially elevated frontal white matter anisotropy in patients at 30 years, followed by rapid white matter decline with age (rate of annual decline; patients: 0.0012, controls 0.0006, P < .001). Our findings point to pathological dependencies between gray and white matter in a large sample of schizophrenia patients. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.