Abstract

Understanding plant hydraulic functioning and water balance during drought has become key in predicting species survival and recovery. However, there are few insightful studies that couple physiological and morphological attributes for many ecosystems, such as the vulnerable Tropical Montane Cloud Forests (TMCF). In this study, we evaluated drought resistance and recovery for saplings for five tree species spanning deciduous to evergreen habits from a Mexican TMCF. In drought simulations, water was withheld until plants reached species-specific P50 or P88 values (pressures required to induce a 50 or 88% loss in hydraulic conductivity), then they were rewatered. Drought resistance was considered within the isohydric-anisohydric framework and compared to leaf gas exchange, water status, pressure-volume curves, specific leaf area, and stomatal density. The TMCF species closed stomata well before significant losses in hydraulic conductivity (isohydric). Yet, despite the coordination of these traits, the traits were not useful for predicting the time needed for the species to reach critical hydraulic thresholds. Instead, maximum photosynthetic rates explained these times, reinforcing the linkage between hydraulic and carbon dynamics. Despite their varying hydraulic conductivities, stomatal responses, and times to hydraulic thresholds, 58 of the 60 study plants recovered after the rewatering. The recovery of photosynthesis and stomatal conductance can be explained by the P50 values and isohydry. This study raises new questions surrounding drought management strategies, recovery processes, and how lethal thresholds are defined. Further studies need to consider the role of water and carbon balance in allowing for both survival and recovery from drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call