Abstract

Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS) to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato) as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas), T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV) of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand’s merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M). The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.

Highlights

  • Invasive alien species (IAS) are a major problem worldwide

  • To verify the climate suitability model for T. pityocampa, the CLIMEX Ecoclimatic Index was compared with the reported distribution in Europe and North Africa (Fig. 3)

  • In total 65% of the total plantation area within New Zealand was projected to be suitable for T. pityocampa

Read more

Summary

Introduction

Invasive alien species (IAS) are a major problem worldwide. Despite the efforts of biosecurity agencies and an international phytosanitary legal framework for the management of invasion pathways, the rate at which these species are invading new territories appears to be increasing rapidly [1,2]. Globalisation is having a major impact on the spread of crop pests with increased trade and travel providing new dispersal pathways for pests [3]. In addition to increasing the dispersal options for pests, globalisation of agriculture, silviculture, and horticulture is homogenising the distribution patterns of plant hosts across continents. In combination, these processes are increasing pest risk profiles in terms of both threats and vulnerabilities [4]. The rate of biological invasions has fuelled demands from biosecurity agencies for information on the potential distribution and impacts of IAS in terms of economics, human health and biodiversity. Process-based niche models, such as CLIMEX, have utilised these relationships to project the potential distribution and relative abundance of a wide range of invasive insects, weeds and pathogens under both current and future climatic conditions [8,9,10,11,12,13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call