Abstract
The fight against biological aging (bio-aging) is long-standing, with the focus of intense research aimed at maintaining high rates of tissue regeneration to promote health and longevity. Nevertheless, there are overwhelming complexities associated with the quantitative analysis of aging. In this study, we sought to quantify bio-aging based on physical aging, by mapping instances of multicellular regeneration to the relaxation of physical systems. An experiment of delayed wound healing assays was devised to obtain delay-dependent healing data. The experiment confirmed the slowdown of healing events, which fitted dynamical scaling just as relaxation events do in physical aging. The scaling exponent, which describes the aging rate in physics, is here similarly proposed as an indicator of the deterioration rate of tissue-regenerative power. Parallel equation-based and cell-based simulations also revealed that asymmetric cell cycle-regulatory mechanisms under strong growth-inhibitory conditions predominantly control the critical slowdown of healing analogous to physical criticality. By establishing a direct link between physical aging and biological aging, we are able to estimate the aging rate of tissues and to achieve an integrated understanding of bio-aging mechanism which may improve the modulation of regeneration for clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.