Abstract
Two non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 μm) and middle sized (~101 μm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.