Abstract

To incorporate into the lambda phage genome, a luxI-based acyl-homoserine lactone (AHL) synthase genetic construct and exploit the autoamplified power of quorum sensing to translate a phage infection event into a chemical signature detectable by a lux-based bioluminescent bioreporter, with focus towards facile detection of microbial pathogens. The luxI gene from Vibrio fischeri was inserted into the lambda phage genome to construct a model phage-based biosensor system for the general detection of Escherichia coli. The AHL signalling molecules synthesized upon phage infection are detected by an AHL-specific bioluminescent bioreporter based on the luxCDABE gene cassette of V. fischeri. The assay generates target-specific visible light signals with no requisite addition of extraneous substrate. This binary reporter system was able to autonomously respond to lambda phage infection events at target E. coli concentrations ranging from 1 x 10(8) to 1 CFU ml(-1) within 1.5-10.3 h, respectively, in pure culture. When assayed against artificially contaminated lettuce leaf washings, detection within an E. coli inoculum range from 1 x 10(8) to 130 CFU ml(-1) was achieved within 2.6-22.4 h, respectively. The initial feasibility of binary phage-based reporter assays indicates that quorum sensing can be used to translate a phage infection event into an autoamplified chemical signature. With further modification, binary phage-based reporter assays may be capable of rapidly and cost effectively detecting pathogenic agents at very low population densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.