Abstract
Paleoenvironmental reconstructions of fossil sites based on isotopic analyses of enamel typically rely on data from multiple herbivore taxa, with the assumption that this dietary spectrum represents the community's isotopic range and provides insights into local or regional vegetation patterns. However, it remains unclear how representative the sampled taxa are of the broader herbivore community and how well these data correspond to specific ecosystems. Verifying these underlying assumptions is essential to refining the utility of enamel isotopic values for paleoenvironmental reconstructions. This study explores potential links between modern herbivore community carbon isotopic enamel spectra, biome types, and climate in sub-Saharan Africa. This region is one of the most comprehensively isotopically sampled areas globally and is of particular relevance to hominin evolution. Our extensive data compilation reveals that published enamel isotopic data from sub-Saharan Africa typically sample only a small percentage of the taxa documented at most localities and that some biome types (e.g., subtropical savannas) are dramatically overrepresented relative to others (e.g., forests) in these modern data sets. Multiple statistical analyses, including linear models and cluster analyses, revealed weak relationships of associated mammalian herbivore enamel isotopic values, biome type, and climate parameters. These results confound any simple assumptions about how community isotopic profiles map onto specific environments, highlighting the need for more precise strategic approaches in extending isotopic frameworks into the past for paleoecological reconstructions. Developing more refined modern analogs will ultimately allow us to more accurately characterize the isotopic spectra of paleo-communities and link isotopic dietary signatures to specific ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.