Abstract

To understand the effects of silvicultural treatments on tree and product modulus of elasticity (MOE), an intensive study along the stand-tree-product value chain was conducted. Acoustic tests were performed on 460 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from two sites in the US Pacific Northwest. Trees on a site in Washington were 51 years old, while those situated in Oregon were 45 years old. Both sites comprised five plots: Plot A was the control, while Plots B, C, D, and E were prescribed with differing thinning treatments. Acoustic readings were stratified, and a sample of six trees per plot randomly selected from the stratified samples. Trees were harvested, cross-cut, and peeled into veneer. Veneer was acoustically tested, and density and MOE calculated for each sheet. Veneer sheets were grouped by parent bolt and tree, and MOE of the butt veneer bolt and the parent tree determined from the mean. Plot means were compared using one-way analysis of variance (ANOVA), and regression models developed with mean tree MOE as the response variable and non-destructive tree measures as explanatory variables. Further models were developed to demonstrate the relationship between tree diameter and the number of veneer sheets peeled, and between MOE of the parent tree and butt bolt. MOE was negatively correlated with diameter and taper, and positively correlated with acoustic velocity, V. The relationship with V2, following the wave equation (MOE = ρV2) under the assumption of constant density, ρ, was no better than that with V. While the correlations suggest that thinning regimes that cause rapid diameter growth and increased taper may be susceptible to a reduction in overall stiffness, there was no evidence, as determined by ANOVA, to suggest that thinning reduces stiffness. On the contrary, mean MOE at plot E (light thinning) was 12.6 GPa and the control was 10.2 GPa, with the difference significant at the 10% level (p-value = 0.074). In general, trees with MOE exceeding the recommended tree breeding value of 11 GPa were of low taper and small diameter, suggesting that regimes with a lesser impact on taper and diameter, as demonstrated by Plot E, are worthy of further investigation.

Highlights

  • To understand the effects of silvicultural treatments on tree and product modulus of elasticity (MOE), an intensive study along the stand-tree-product value chain was conducted

  • These values tended to decrease with decreasing standing tree acoustic velocity, for the control plot A and for plot D

  • Diameter growth associated with Plot E did not differ significantly from the control plot A at both sites, nor for Plot C at Site 803

Read more

Summary

Introduction

To understand the effects of silvicultural treatments on tree and product modulus of elasticity (MOE), an intensive study along the stand-tree-product value chain was conducted. Acoustic tests were performed on 460 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from two sites in the US Pacific Northwest. Evaluation and estimation of the properties of products that can be expected from standing trees is important to tree breeders, growers and wood processors alike. For Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), stiffness has been identified as one of the most important properties, for engineered products such as exceed) of 1.6 million psi average whole-tree stiffness has been proposed (Jayawickrama et al 2009). Lindström et al (2002) emphasised that stiffness needs to be evaluated, and used for selection, all along the value chain – from seed through final wood product. If elite populations of high-stiffness seedlots were subsequently grown and silvicultural treatments applied for a designated end use, the purpose-bred and purposegrown trees could potentially realise even greater benefits upon harvest

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call