Abstract

Metal-Organic Frameworks (MOFs) have gained much interest due to their intrinsic tunable nature. In this work, we study how linker functionalization modifies the electronic structure of the host MOF, more specifically the MIL-47(V)-R (R=-F, -Cl, -Br, -OH, -CH$_3$, -CF$_3$, and -OCH$_3$). It is shown that the presence of a functional group leads to a splitting of the $\pi$-orbital on the linker. Moreover, the upward shift of the split-off $\pi$-band correlates well with the electron withdrawing/donating nature of the functional groups. For halide functional groups the presence of lone-pair back donation is corroborated by calculated Hirshfeld-I charges. In case of the ferromagnetic configuration of the host MIL-47(V$^{\mathrm{+IV}}$) material a half-metal to insulator transition is noted for the -Br, -OCH$_3$, and -OH functional groups, while for the anti-ferromagnetic configuration only the hydroxy-group results in an effective reduction of the band gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call