Abstract
Accurately estimating the prices of houses is important for various stakeholders including house owners, real estate agencies, government agencies, and policy-makers. Towards this end, traditional statistics and, only recently, advanced machine learning and artificial intelligence models are used. Open Government Data (OGD) have a huge potential especially when combined with AI technologies. OGD are often published as linked data to facilitate data integration and re-usability. EXplainable Artificial Intelligence (XAI) can be used by stakeholders to understand the decisions of a predictive model. This work creates a model that predicts house prices by applying machine learning on linked OGD. We present a case study that uses XGBoost, a powerful machine learning algorithm, and linked OGD from the official Scottish data portal to predict the probability the mean prices of houses in the various data zones of Scotland to be higher than the average price in Scotland. XAI is also used to globally and locally explain the decisions of the model. The created model has Receiver Operating Characteristic (ROC) AUC score 0.923 and Precision Recall Curve (PRC) AUC score 0.891. According to XAI, the variable that mostly affects the decisions of the model is Comparative Illness Factor, an indicator of health conditions. However, local explainability shows that the decisions made in some data zones may be mostly affected by other variables such as the percent of detached dwellings and employment deprived population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.