Abstract

The power consumed by memory systems accounts for 45% of the total power consumed by an embedded system, and the power consumed during a memory access is 10 times higher than during a cache access. Thus, increasing the cache hit rate can effectively reduce the power consumption of the memory system and improve system performance. In this study, we increased the cache hit rate and reduced the cache-access power consumption by developing a new cache architecture known as a single linked cache (SLC) that stores frequently executed instructions. SLC has the features of low power consumption and low access delay, similar to a direct mapping cache, and a high cache hit rate similar to a two way-set associative cache by adding a new link field. In addition, we developed another design known as a multiple linked caches (MLC) to further reduce the power consumption during each cache access and avoid unnecessary cache accesses when the requested data is absent from the cache. In MLC, the linked cache is split into several small linked caches that store frequently executed instructions to reduce the power consumption during each access. To avoid unnecessary cache accesses when a requested instruction is not in the linked caches, the addresses of the frequently executed blocks are recorded in the branch target buffer (BTB). By consulting the BTB, a processor can access the memory to obtain the requested instruction directly if the instruction is not in the cache. In the simulation results, our method performed better than selective compression, traditional cache, and filter cache in terms of the cache hit rate, power consumption, and execution time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call