Abstract

Among protein secretion systems, there are specialized ATPases that serve different functions such as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX (early secretory antigen target 6kDa secretion) protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to date have one ATPase domain and oligomerize to form a functional molecular machine, most commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, encoded either by a single gene or by two operonic genes. It is currently unknown which of the ATPase domains is catalytically functional and whether each domain plays the same or a different function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels protein translocation. We further show that individual ATPase domains play distinct roles in substrate translocation and complex formation. Comparing the single-chain and split ESX ATPases, we reveal differences in the requirements of these unique secretory ATPases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.