Abstract

The linked cluster expansion has been shown to be highly efficient in calculating equilibrium and nonequilibrium properties of a variety of 1D and 2D classical and quantum lattice models. In this article, we extend the linked cluster method to the Cayley tree and its boundaryless cousin the Bethe lattice. We aim to (a) develop the linked cluster expansion for these lattices, a novel application, and (b) to further understand the surprising convergence efficiency of the linked cluster method, as well as its limitations. We obtain several key results. First, we show that for nearest-neighbor Hamiltonians of a specific form, all finite treelike clusters can be mapped to one dimensional finite chains. We then show that the qualitative distinction between the Cayley tree and Bethe lattice appears due to differing lattice constants that is a result of the Bethe lattice being boundaryless. We use these results to obtain the explicit closed-form formula for the zero-field susceptibility for the entire disordered phase up to the critical point for Bethe lattices of arbitrary degree; remarkably, only 1D chainlike clusters contribute. We also obtain the exact zero field partition function for the Ising model on both trees with only the two smallest clusters, similar to the 1D chain. Finally, these results achieve a direct comparison between an infinite lattice with a nonnegligible boundary and one without any boundary, allowing us to show that the linked cluster expansion eliminates boundary terms at each order of the expansion, answering the question about its surprising convergence efficiency. We conclude with some ramifications of these results, and possible generalizations and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.