Abstract

Abstract. This paper investigates the single and combined impacts of El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

Highlights

  • It is well known that El Niño–Southern Oscillation (ENSO) is an important factor influencing the interannual climate variability over East Asia (Zhou and Wu, 2010)

  • The precipitation/streamflow time series were first extracted for each calendar month conditioned by El Niño/La Niña events – for instance, the multi-year mean value of January precipitation occurs during El Niño periods was treated as “January precipitation in El Niño”

  • The series in Warm Pacific Decadal Oscillation (PDO)–El Niño, Warm PDO–La Niña, Cool PDO–El Niño, and Cool PDO– La Niña are stratified using the method similar to Sect. 2.2.1 from the precipitation/streamflow series extracted for PDO warm/cool phase, separately

Read more

Summary

Introduction

It is well known that El Niño–Southern Oscillation (ENSO) is an important factor influencing the interannual climate variability over East Asia (Zhou and Wu, 2010). The precipitation patterns showed different responses in El Niño periods for southeastern South America and Myanmar during PDO warm/cool phases (Silva et al, 2011; Sen Roy and Sen Roy, 2011). These studies indicated that the in-phase/out-of-phase relationships of ENSO and PDO usually have distinct effects on precipitation and streamflow in different regions, and discussions considering the influences of ENSO in association with PDO are necessary.

The precipitation data
The streamflow data
Precipitation and streamflow stratification according to El Niño and La Niña
ENSO and PDO
Precipitation impacts of El Niño and La Niña events
Streamflow impacts of El Niño and La Niña events
80 Yangtze River
Variability of precipitation due to PDO impacts
Variability of streamflow due to PDO impacts
Combined influences of ENSO and PDO on both
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call