Abstract
BackgroundRecords of medication prescriptions can be used in conjunction with pharmacy dispensing records to investigate the incidence of adherence, which is defined as observing the treatment plans agreed between a patient and their clinician. Using prescribing records alone fails to identify primary non-adherence; medications not being collected from the dispensary. Using dispensing records alone means that cases of conditions that resolve and/or treatments that are discontinued will be unaccounted for. While using a linked prescribing and dispensing dataset to measure medication non-adherence is optimal, this linkage is not routinely conducted. Furthermore, without a unique common event identifier, linkage between these two datasets is not straightforward.MethodsWe undertook a secondary analysis of the Salford Lung Study dataset. A novel probabilistic record linkage methodology was developed matching asthma medication pharmacy dispensing records and primary care prescribing records, using semantic (meaning) and syntactic (structure) harmonization, domain knowledge integration, and natural language feature extraction. Cox survival analysis was conducted to assess factors associated with the time to medication dispensing after the prescription was written. Finally, we used a simplified record linkage algorithm in which only identical records were matched, for a naïve benchmarking to compare against the results of our proposed methodology.ResultsWe matched 83% of pharmacy dispensing records to primary care prescribing records. Missing data were prevalent in the dispensing records which were not matched – approximately 60% for both medication strength and quantity. A naïve benchmarking approach, requiring perfect matching, identified one-quarter as many matching prescribing records as our methodology. Factors associated with delay (or failure) to collect the prescribed medication from a pharmacy included season, quantity of medication prescribed, previous dispensing history and class of medication. Our findings indicate that over 30% of prescriptions issued were not collected from a dispensary (primary non-adherence).ConclusionsWe have developed a probabilistic record linkage methodology matching a large percentage of pharmacy dispensing records with primary care prescribing records for asthma medications. This will allow researchers to link datasets in order to extract information about asthma medication non-adherence.
Highlights
Records of medication prescriptions can be used in conjunction with pharmacy dispensing records to investigate the incidence of adherence, which is defined as observing the treatment plans agreed between a patient and their clinician
Medication data can be used in research to assess changes in medication prescribing trends over time [1], for pharmacovigilance studies, and to investigate patients not adhering to the treatment plans agreed upon with their General Practitioner (GP) [2,3,4]
After a medication prescription is issued to a patient by a GP or another authorized prescriber [21], the prescription is taken to a dispensing outlet such as a community pharmacy [22]
Summary
Records of medication prescriptions can be used in conjunction with pharmacy dispensing records to investigate the incidence of adherence, which is defined as observing the treatment plans agreed between a patient and their clinician. Using prescribing records alone fails to identify primary non-adherence; medications not being collected from the dispensary. Medication data can be used in research to assess changes in medication prescribing trends over time [1], for pharmacovigilance studies, and to investigate patients not adhering to the treatment plans agreed upon with their General Practitioner (GP) [2,3,4]. In studies of linked (or integrated) prescribing and dispensing records, failure to collect the initial asthma prescription (primary non-adherence) has reported incidence between 12 and 45% [13,14,15,16,17], with high variance due to differences in the right censoring point. Without linking the records together, it is not possible to ascertain whether a prescribed medication was collected, or to rule out other reasons for irregularities in collection such as treatment conclusion or sanctioned treatment interruptions [1, 23, 24]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.