Abstract

Electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce ethylene (C2H4) is conducive to sustainable development of energy and environment. At present, most electrocatalysts for C2H4 production are limited to the heavy metal copper, meanwhile, achieving metal-free catalysis remains a challenge. Noted piperazine with sp3 N hybridization is beneficial to CO2 capture, but CO2RR performance and mechanism have been lacking. Herein, based on linkage engineering, we construct a novel high-density sp3 N catalytic array via introducing piperazine into the crystalline and microporous aminal-linked covalent organic frameworks (COFs). Thanks to its high sp3 N density, strong CO2 capture capacity and great hydrophilicity, aminal-linked COF successfully achieves the conversion of CO2 to C2H4 with a Faraday efficiency up to 19.1 %, which is stand out in all reported metal-free COF electrocatalysts. In addition, a series of imine-linked COFs are synthesized and combined with DFT calculations to demonstrate the critical role of sp3 N in enhancing the kinetics of CO2RR. Therefore, this work reveals the extraordinary potential of linkage engineering in COFs to break through some catalytic bottlenecks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call