Abstract

Refining carrier transfer in bandgap-broken heterojunctions, which consist of two semiconductors with broken bandgaps, is crucial yet highly challenging for photocatalysis. Herein, we incorporated amorphous carbons (AC) into the bandgap-broken V2O5/GdCrO3 heterojunctions, inducing a linkage effect to facilitate photoexcited carrier transfer. The created V-O-C and Cr-O-C bonds in V2O5-AC-GdCrO3 interfaces show almost identical orbital energies to overcome the broken-gap energy barriers at interfaces. The holes at GdCrO3’s valence band and electrons at V2O5’s conduction band tent to migrating toward the carbon ring of amorphous carbon via Cr-O-C and V-O-C bonds, thereby enhancing carrier separation of bandgap-broken V2O5/AC/GdCrO3 heterojunction. By controlling the relative amount of metal-O-C bonds in the interface, the modulation of charge transfer kinetics was also achieved on V2O5/AC/GdCrO3, resulting in ∼7 times higher of H2 generation than V2O5/GdCrO3. The concept could be expanded to the other carbon allotropes, including graphene, carbon nanotube, and graphdiyne conjugated structures, demonstrating a universal strategy in reaching optimal charge transfer of broken-bandgap heterojunctions for photocatalytic H2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.