Abstract

BackgroundGenomic technologies, such as high-throughput genotyping based on SNP arrays, have great potential to decipher the genetic architecture of complex traits and provide background information concerning genome structure in domestic animals, including the extent of linkage disequilibrium (LD) and haplotype blocks. The objective of this study was to estimate LD, the population evolution (past effective population size) and the level of inbreeding in Spanish Churra sheep.ResultsA total of 43,784 SNPs distributed in the ovine autosomal genome was analyzed in 1,681 Churra ewes. LD was assessed by measuring r2 between all pairs of loci. For SNPs up to 10 kb apart, the average r2 was 0.329; for SNPs separated by 200–500 kb the average r2 was 0.061. When SNPs are separated by more than 50 Mbp, the average r2 is the same as between non-syntenic SNP pairs (0.003). The effective population size has decreased through time, faster from 1,000 to 100 years ago and slower since the selection scheme started (15–25 generations ago). In the last generation, four years ago, the effective population size was estimated to be 128 animals. Inbreeding coefficients, although differed depending on the estimation approaches, were generally low and showed the same trend, which indicates that since 2003, inbreeding has been slightly increasing in the studied resource population.ConclusionsThe extent of LD in Churra sheep persists over much more limited distances than reported in dairy cattle and seems to be similar to other ovine populations. Churra sheep show a wide genetic base, with a long-term viable effective population size that has been slightly decreasing since selection scheme began in 1986. The genomic dataset analyzed provided useful information for identifying low-level inbreeding in the sample, whereas based on the parameters reported here, a higher marker density than that analyzed here will be needed to successfully conduct accurate mapping of genes underlying production traits and genomic selection prediction in this sheep breed. Although the Ovine Assembly development is still in a draft stage and future refinements will provide a more accurate physical map that will improve LD estimations, this work is a first step towards the understanding of the genetic architecture in sheep.

Highlights

  • Genomic technologies, such as high-throughput genotyping based on SNP arrays, have great potential to decipher the genetic architecture of complex traits and provide background information concerning genome structure in domestic animals, including the extent of linkage disequilibrium (LD) and haplotype blocks

  • The number of markers removed during Quality control (QC) was 8,726 SNPs: 4,140 SNPs were deleted due to low call rate (< 0.95); 3,044 SNPs did not reach minimum minor allele frequency (MAF) (< 0.05); and 1,542 markers were not in Hardy-Weinberg equilibrium (HWE) (P ≤ 0.00001)

  • This study presents an analysis of the extent of LD in Spanish Churra sheep using 43,784 SNPs distributed across the autosomal genome, the draft stage of the version of the Ovine Assembly it is based on should be taken into account

Read more

Summary

Introduction

Genomic technologies, such as high-throughput genotyping based on SNP arrays, have great potential to decipher the genetic architecture of complex traits and provide background information concerning genome structure in domestic animals, including the extent of linkage disequilibrium (LD) and haplotype blocks. The extension of LD in the genome could be used to infer ancestral effective population size (Ne) [5,6,7] This is an important population parameter that helps to explain how populations evolved and can improve the understanding and modeling of the genetic architecture underlying complex traits [8]. Another aspect of interest while studying a commercial population under selection pressure is to study the level of inbreeding. Several methods have been described for this purpose [10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.