Abstract

Linkage disequilibrium (LD) plays an important role in genomic selection and mapping of quantitative trait loci (QTL). This study investigated the pattern of LD and effective population size (Ne ) in Gir cattle selected for yearling weight. For this purpose, 173 animals with imputed genotypes (from 18 animals genotyped with the Illumina BovineHD BeadChip and 155 animals genotyped with the Bovine LDv4 panel) were analysed. The LD was evaluated at distances of 25-50kb, 50-100kb, 100-500kb and 0.5-1Mb. The Ne was estimated based on 5 past generations. The r2 values (a measure of LD) were, respectively, .35, .29, .18 and .032 for the distances evaluated. The LD estimates decreased with increasing distance of SNP pairs and LD persisted up to a distance of 100kb (r2 =.29). The Ne was greater in generations 4 and 5 (24 and 30 animals, respectively) and declined drastically after the last generation (12 animals). The results showed high levels of LD and low Ne , which were probably due to the loss of genetic variability as a consequence of the structure of the Gir population studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.