Abstract

In 2005, a 7‐ha artificial watershed (Chicken Creek) was built on a post mined landscape in Lusatia, Germany from sandy substrates of Pleistocene origin, commonly used in reclamation. The watershed was developed to investigate the initial phase of soil and ecosystem development under natural conditions. At this early stage, mineral nitrogen in young sandy soils is primarily limited and nitrogen fixing legumes become key components of natural succession. Local abundant pioneering legumes Lotus corniculatus and Trifolium arvense and one pioneer grass species Calamagrostis epigeios were investigated 5 years after watershed construction. In this study, we investigated the influence of spatial root and nodule distribution of these species on soil nitrogen accumulation. Soil, including roots, was sampled from field monoliths covered with the aforementioned plant species. Root systems of both legumes were mainly restricted to the upper 20 cm of soil, whereas roots of C. epigeios also developed strongly at greater depths. A positive relationship was found, with higher plant densities associated with higher root densities which were associated with higher nodule densities for legumes and which were all associated with significantly higher soil nitrogen content relative to non‐vegetated areas. This research provides rare information on the role root systems of pioneer legumes play in soil nitrogen input in the early stage of soil and ecosystem development during revegetation by natural succession.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.